PRONE VENTILATION IN ARDS

Dr Dominic So ICU, PMH

PHYSIOLOGY - SUPINE

- In ARDS, the dorsal/dependent regions of lungs are more susceptible to decruitment in supine position :
 - Pressure exerted by the heart
 - Pressure by lung mass itself
 - Accumulation of fluid in pleural space
 - Pressure exerted by abdominal contents (in patients who have lost diaphragmatic tone)
 - High lung compliance in nondependent region
- The consequence is uneven alveolar filling with VQ mismatch

Arch Bronconeumol. 2009;45(6):291-296

PHYSIOLOGY - PRONE

Prone position results in more even alveolar ventilation

- > Infiltrates redistribution
- Reduced compression of the lungs by the heart and lung
- Decreased lung compliance in nondependent region
- > Less pressure from abdominal contents
- > Facilitates drainage of secretions
- Blood flow pattern does not change significantly.
- VQ matching therefore improves.

EFFECT OF PRONE ON OXYGENATION

6 randomized controlled trials prior to 2013

- All demonstrated improvements in oxygenation with prone.
- But none showed statistical difference in mortality.

Found :

- Response time short.
- Improvements in oxygenation usually persistent.
- Most likely to respond: increased IAP, lower lung compliance in prone, dependent alveolar collapse, extrapulmonary ARDS.

NOT HYPOXAEMIA KILLING PATIENTS PER SE

VENTILATOR ASSOCIATED LUNG INJURY (VALI)

Lung injury from:

- Overdistension/shear -> physical injury
- Mechanotransduction -> "biotrauma"
- Repetitive opening/closing
- Shear at open/collapsed lung interface

- Systemic inflammation and death from:
 - Systemic release of cytokines, endotoxin, bacteria, proteases

Therapy must be directed towards preventing VALI rather than purely improving oxygenation.

That way, when primary pathology (e.g. pneumonia) is reversed, the patients can be rapidly weaned off from the ventilator because the lungs have not been further damaged by VALI.

PRONE VENTILATION IN PREVENTING VALI

Lung injury from:

- Overdistension/shear -> physical injury
- Mechanotransduction -> "biotrauma"
- Repetitive opening/closing
- Shear at open/collapsed lung interface

Systemic inflamm

and death from:

Systemic releases ytokines, endotoxin, bacteria, proteases

EARLIER TRIALS ON PRONE VENTILATION

EARLIER TRIALS OF PRONE

Selected baseline characteristics, within trial mechanical ventilation parameters and mortality of included trials investigating prone positioning

First author (reference), year	Patie	ents, n	PaO ₂ /FiO ₂ at mm	t baseline*, Hg	Tidal vo during tria	olume i*, mL/kg	PEEP dur cmF	ing trial*, I ₂ O	Duration of prone*,	Mortal	ity†, %	P for
	P	S	P	S	P	S	P	S	h	Р	S	mortality [†]
Gattinoni (29), 2001	152	152	85.7±24.6	88.3±25.9	10.3±2.7	10.3±2.9	9.7±2.9	9.6±3.2	7	21.1	25.0	NS
Guérin (18), 2004	413	378	150±59	155± 59	8.1±2.0	8.1±1.9	7.9± 3.4	7.5± 3.2	8	31.5	32.4	NS
Mancebo (17), 2006	76	60	107±65	126±94	8.3 ±1.7	8.6±1.6	12.4 ±1.9	12.3±2.4	17	43	58	NS
Chan (19), 2007	11	11	111±62	107±81	7.8±1.0	7.6±1.2	13.1±1.5	13.6±2.3	72	36.4	36.4	NS
Fernandez (20), 2008	21	19	113±43	122±40	8.6±2.1	9.2±2.2	11.1±4.1	11.4±3.8	NR	38.0	53.0	NS
Taccone (16), 2009	168	174	113±39 [‡]	: :	8.0±1.7	-	10±3		18	31	32.8	NS

Problems : not use in a way to reduce VALI!

- Use large tidal volumes -> amplify lung strain in both groups
- Duration too short (hours per day, total no of days) -> not enough to mitigate VALI
- Used too late -> VALI already established

EFFECT OF PRONE ON MORTALITY

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JUNE 6, 2013

VOL. 368 NO. 23

Prone Positioning in Severe Acute Respiratory Distress Syndrome

 Claude Guérin, M.D., Ph.D., Jean Reignier, M.D., Ph.D., Jean-Christophe Richard, M.D., Ph.D., Pascal Beuret, M.D., Arnaud Gacouin, M.D., Thierry Boulain, M.D., Emmanuelle Mercier, M.D., Michel Badet, M.D.,
 Alain Mercat, M.D., Ph.D., Olivier Baudin, M.D., Marc Clavel, M.D., Delphine Chatellier, M.D., Samir Jaber, M.D., Ph.D., Sylvène Rosselli, M.D., Jordi Mancebo, M.D., Ph.D., Michel Sirodot, M.D., Gilles Hilbert, M.D., Ph.D., Christian Bengler, M.D., Jack Richecoeur, M.D., Marc Gainnier, M.D., Ph.D., Frédérique Bayle, M.D.,
 Gael Bourdin, M.D., Véronique Leray, M.D., Raphaele Girard, M.D., Loredana Baboi, Ph.D., and Louis Ayzac, M.D., for the PROSEVA Study Group*

PROSEVA – EARLY, PROLONGED

Indications :

Patients with severe ARDS, defined as

PaO₂:FiO₂ ratio of <150 mmHg (20 kPa) with FiO₂ of ≥0.6, PEEP of ≥5

Prone protocol :

- At least 16 hours per day
- ► Continue daily until improvement (PaO_2 :Fi $O_2 \ge 150$ mmHg, with PEEP of ≤ 10 and Fi O_2 of ≤ 0.6 , 4 hours after supine)

PROSEVA

Mortality 32.8% -> 16%

COMPARED WITH EARLIER TRIALS

Selected baseline characteristics, within trial mechanical ventilation parameters and mortality of included trials investigating prone positioning

First author	Patie	ents, n	PaO ₂ /FiO ₂ at mm	t baseline*, Hg	Tidal vo during tria	olume I*, mL/kg	PEEP dur cmF	ing trial*, I ₂ O	Duration of prone*,	Mortal	lity†, %	P for
(reference), year	P	S	P	S	P	S	P	S	h	P	S	mortality†
Gattinoni (29), 2001	152	152	85.7±24.6	88.3±25.9	10.3±2.7	10.3±2.9	9.7±2.9	9.6±3.2	7	21.1	25.0	NS
Guérin (18), 2004	413	378	150±59	155± 59	8.1±2.0	8.1±1.9	7.9± 3.4	7.5± 3.2	8	31.5	32.4	NS
Mancebo (17), 2006	76	60	107±65	126±94	8.3 ±1.7	8.6±1.6	12.4 ±1.9	12.3±2.4	17	43	58	NS
Chan (19), 2007	11	11	111±62	107±81	7.8±1.0	7.6±1.2	13.1±1.5	13.6±2.3	72	36.4	36.4	NS
Fernandez (20), 2008	21	19	113±43	122±40	8.6±2.1	9.2±2.2	11.1±4.1	11.4±3.8	NR	38.0	53.0	NS
Taccone (16), 2009	168	174	113±39‡	-	8.0±1.7	-	10±3		18	31	32.8	NS
Guérin (30), 2013	237	229	100±30	100±20	6.1±0.6	6.1±0.6	10±3	10±4	17	16	32.8	<0.001

*All values reported separately for prone (P) and supine (S) groups, and as mean ± SD where data were available. Where separate group values are not shown, values reflect the mean of both P and S groups; [†]Mortality rates and P values reported for primary outcome measure in each study; [‡]Values not reported separately for P and S groups. FiO₂ Fraction of inspired oxygen; NR Not reported; NS Not significant; PaO₂ Partial pressure of oxygen; PEEP Positive end-expiratory pressure

The Efficacy and Safety of Prone Positional Ventilation in Acute Respiratory Distress Syndrome: Updated Study-Level Meta-Analysis of 11 Randomized Controlled Trials*

Joo Myung Lee, MD, MPH1; Won Bae, MD2; Yeon Joo Lee, MD2; Young-Jae Cho, MD, MPH2

CCM 2014; 42:1252-1262

Included 11 RCT

Prone ventilation significantly reduced mortality (odds ratio, 0.77; 95% Cl, 0.59–0.99; p = 0.039).

	No. of Trials	No. of Patients	Odds Ratio (95% CI) for Mortality	Interaction P
Statistical Model			1	
Fixed effects	11	2,246	0.82 (0.69-0.97)	
Radom Effects	11	2,246		
Lung Protective Ventilation				0.015
Yes	8	1,100		
No	3	1,146	1.04 (0.80-1.36)	
Duration of Prone Positioning				0.015
≥ 10 hours/session	8	1,100		
< 10 hours/session	3	1,146	1.04 (0.80-1.36)	
Patient Population				0.021
ARDS only	7	1,060	0.62 (0.48-0.80)	
ALI/ARDS	4	1,186	1.02 (0.76-1.36)	
Severe ARDS population (PaO2/FiO2 ratio)				0.635
≤ 150 mmHg	8	1,364		
> 150 mmHg	3	882	0.77 (0.38-1.55)	
HFOV were used with positioning				0.661
Yes	2	54 -	0.57 (0.18-1.82)	
No	9	2,192		
Adequate concealment of allocation				0.764
Yes	10	2,224		
No/unclear	1	22 -	1.00 (0.18-5.68)	
		0.1	1 1 0	
		Fav	ors Prone Favors Supine	

Figure 4. Stratified subgroup analyses according to the study protocols. The forest plot shows odds ratios (by random-effects model) for overall mortality associated with prone versus supine positioning with studies stratified according to 1) lung protective ventilation, 2) actual duration of prone positioning, 3) disease severity of patients, 4) Pao₂/Fio₂ ratio, 5) high-frequency oscillatory ventilation as a concomitant maneuver, and 6) adequacy of allocation concealment. The *squares* and the *horizontal lines* indicate the odd ratios (ORs) (by random-effects model) and the 95% CI for each trial included. The *dotted line* indicates the point of neutral effect for overall mortality (i.e., the point of random-effects model OR of 1.0). ARDS = acute respiratory distress syndrome, ALI = acute lung injury, HFOV = high-frequency oscillatory ventilation.

Effect of prone positioning during mechanical ventilation on mortality among patients with acute respiratory distress syndrome: a systematic review and meta-analysis

Sachin Sud MD MSc, Jan O. Friedrich MD DPhil, Neill K. J. Adhikari MDCM MSc, Paolo Taccone MD, Jordi Mancebo MD, Federico Polli MD, Roberto Latini MD, Antonio Pesenti MD, Martha A.Q. Curley RN PhD, Rafael Fernandez MD, Ming-Cheng Chan MD, Pascal Beuret MD, Gregor Voggenreiter MD, Maneesh Sud MD, Gianni Tognoni MD, Luciano Gattinoni MD, Claude Guérin MD PhD <u>CMAJ 2014</u>, DOI:10.1503

	Deat	ths, n/N		Favour
Study	Prone	Supine	RR (95% CI)	< pron
Protective lung ventilation mandated				
Curley et al.,37 2005	4/51	4/51	1.00 (0.26-3.78)	
Voggenreiter et al., 38 2005	1/21	3/19	0.30 (0.03-2.66)	<
Chan et al., 35 2007	5/11	6/11	0.83 (0.36-1.94)	
Fernandez et al., ³⁴ 2008	8/21	10/19	0.72 (0.36-1.45)	
Taccone et al., 14 2009	79/166	91/172	0.90 (0.73-1.11)	
Guerin et al., ¹⁷ 2013	57/240	95/234	0.58 (0.44-0.77)	
Subtotal Heterogeneity: P = 29%	154/510	209/506	0.74 (0.59-0.95)	
Protective lung ventilation not mandated	4			
Gattinoni et al., 15* 2001	92/148	87/149	1.06 (0.88-1.28)	
Beuret et al., ³⁹ 2002	1/4	0/3	2.40 (0.13-44.41)	
Guerin et al., ¹⁶ 2004	98/230	81/183	0.96 (0.77-1.20)	
Mancebo et al., ³⁶ 2006	38/76	37/60	0.81 (0.60-1.10)	-
Subtotal Heterogeneity: I ² = 0%	229/458	205/395	0.98 (0.86-1.12)	
Overall Heterogeneity: /² = 42%	383/968	414/901	0.86 (0.73-1.00)	
			o.	1
				RR

Figure 2: Effect of prone positioning during mechanical ventilation on all-cause mortality among patients with acute respiratory distress syndrome in trials that used protective lung ventilation (tidal volume < 8 mL/kg) and in trials that did not mandate protective ventilation. Risk ratios less than 1.0 indicate a decreased risk of death with prone positioning. *Mortality data differed from the original publication after verification by the primary investigator. The test for subgroup interaction is statistically significant (p = 0.05). CI = confidence interval, RR = risk ratio.

Figure 3: Effect of prone positioning during mechanical ventilation on all-cause mortality according to prespecified patient-level and trial-level subgroups. Risk ratios less than 1.0 indicate a decreased risk of death with prone positioning. *Severe hypoxemia = ratio or partial pressure of arterial oxygen to fraction of inspired oxygen (Pao_2/Fio_2) < 100 mm Hg; moderate = Pao_2/Fio_2 ratio 100–199 mm Hg mild = Pao_2/Fio_2 ratio 200–299 mm Hg. CI = 95% confidence interval, RR = risk ratio. Baseline Pao_2/Fio_2 ratios were unavailable for 10 patients in 3 trials.^{17,34,35}

Mortality 32.8% -> 16%

Can ECMO produce a mortality < 16% in these patients? Many of these patients don't need ECMO Which patients should be put on

ECMO?

PRONE FAILURE / PRONE RESPONSIVENESS

Prone Position in Mechanically Ventilated Patients with Severe Acute Respiratory Failure

GÉRARD CHATTE, JEAN-MICHEL SAB, JEAN-MARC DUBOIS, MICHEL SIRODOT, PHILIPPE GAUSSORGUES, and DOMINIQUE ROBERT

Service de Réanimation Médicale et Assistance Respiratoire, Hôpital de la Croix Rousse, Lyon, France

AM J RESPIR CRIT CARE MED 1997;155:473-478.

Looks at prone responsiveness

▶ Prone criteria : PaO_2 :Fi O_2 <150 with Fi O_2 of > 0.5

After 1 hour of prone ventilation, patients are classified as

Nonresponders

▶ patients without a PaO_2 :FiO₂ improvement > 20mmHg (2.7 kPa)

Responders

- ▶ patients with a PaO_2 :FiO₂ response > 20 mmHg
- further subdivided into "nonpersistent" and "persistent" improvement according to stability of the positive effect of the prone position for 1 h after returning to supine

MEAN AND STATISTICAL ANALYSIS OF THE PATIENT CHARACTERISTICS

ACCORDING TO TYPES OF Page/Fige RESPONSE

Mortality in PROSEVA

	THE R. T. P. C.	14/4				1/7	V.	CO	mroi:
	Age	(<i>kg</i>)	SAPS	LIS	MVbf	(ml/kg)	PEEP	FIO2	Mortality
Totał (n = 32)	56 ± 16	68 ± 14	13 ± 4	2.6 ± 0.8	7 ± 10	10 ± 3	9±5	0.75 ± 0.17	18/32 (56%)
Nonresponder: NR (n = 7)	55 ± 22	59 ± 12	14±5	3.1 ± 0.8	6 ± 8	9±3	13 ± 5	0.93 ± 0.10	5/7
All responder: R (n = 25)	56 ± 15	71 ± 14	12 ± 4	2.5 ± 0.7	8 ± 10	10 ± 3	8 ± 4	0.71 ± 0.16	13/25 (52%)
Responder nonper- sistent subgroup; RNP (n = 10)	53 ± 13	70±18	12 ± 4	2.5 ± 0.7	7±11	11 ± 2	7±5	0.73 ± 0.14	6/10 (60%)
Responder per- sistent subgroup: RP (n = 13)	57 ± 16	72 ± 10	12 ± 5	2.5 ± 0.8	9±10	10 ± 3	9±4	0.66±0.15	5/13 (38%)
Groups			C	Comparison	s Between E	Different Re	sponses		<u> </u>
NR/R	NS	p < 0.08	NS	NS	p < 0.05	NS	p < 0.05	p < 0.01	N5
NR/RNP/RP	NS	NS	NS	NS	NS	NS	N5	p < 0.05	NS

Definition of abbreviations: SAPS = simplified acute physiologic score; LIS = lung injury score; MVbf = duration of mechanical ventilation before the first 4 h prone trial (day); NR/R are between nonresponder and responder; NR/RNP/RP, AOV are between the three types of response.

Mostly responders

 Responsiveness highly predictive of outcome/mortality (over-// estimated due to high TV used and much shorter duration of prone ventilation)

	Estimated Mortality	Decision for vvECMO
Nonresponders	~40%	Proceed to vvECMO if indications for vvECMO met
Responder nonpersistent	~30%	Consider for vvECMO weighing the benefits and risks e.g. age, days of MV, viral vs bacterial, bleeding risks
Responder persistent	<16%	No need for ECMO

Start ECMO early if prone fails (aim to limit VALI) Most responders have improvement in gas exchange within 1 hour

OUR STRATEGY IN PMH

Difficult oxygenation/ventilation

 Early prone ventilation
 PROVESA: P/F<150, FiO2>0.6, PEEP>5
 Early ECMO

For nonresponder

Things to consider : viral vs bacterial

age days of MV SOFA score

PRONE VENTILATION PROTOCOL

Prone Ventilation Protocol

Indications 1;

Patients with severe ARDS, defined as

a PaO₂:FiO₂ ratio of <150 mmHg (20 kPa) with an FiO₂ of ±0.6, a PEEP of ±5 cm of water and a tidal volume of about 6 ml per kg of predicted body weight

Contraindications :

Absolute :	Spinal instability
	Unmonitored increased ICP
Relative :	Open abdominal wounds
	Multiple trauma with unstabilized fractures
	Prognancy
	Severe hemodynamic instability
	High dependency on airway and vascular access

Prone protocol (aim for early prone ventilation for extended periods) :

- Place patient in a completely prone position for at least 16 consecutive hours per day. Prone ventilation should be resumed at any time before the planned assessment at 4 hours in the supine position if oxygenation cannot be maintained.
- 2. Continue daily prone ventilation until improvement in gas exchange.

Ventilator Setting :

Tidal volume targeted at 6 ml per kg of predicted body weight with high PEEP level adjusted according to individual unit's practice.

The goal is to maintain Pplat of no more than 30 cm of water and an arterial pH of 7.20 to 7.45.

After 1 hour of prone ventilation, patients are classified as Nonresponders

- patients without a PaO₂;FiO₂ improvement greater than 20mmHg (2.7 kPa)
- more likely in patients with lower PaO2:FiO2, higher PEEP, longer duration mechanical ventilation prior to proming

- patients with a PaO₂:FiO₂ response greater than 20 mmHg (2.7 kPa)
- further subdivided into "nonpersistent" and "persistent" improvement according to stability of the positive effect of the prone position for 1 h after returning to supine

	* Estimated Mortality +	Decision for vvECMO
Nonresponders	71% (~#0%)	Proceed to vvECMO if indications for vvECMO met
Responder nonpersistent	60% (~30%)	Consider for vvECMO weighing the benefits and risks e.g. age, days of mechanical ventilation, viral vs bacterial, bleeding risks
Responder persistent	38% (<2±%)	No need for ECMO

("Estimated mortality likely over-estimated due to high tidal volume and much shorter prone duration used in trial, see attached table, figures in brackets are estimates based on current data)

Proceed to ECMO early if prone ventilation fails.

Criteria for stopping prone treatment:

- Improvement in oxygenation (defined as a PaO₂:FiO₂ ratio of ≥150 mmHg (20 kPa), with a PEEP of ≤10 cm of water and an FiO₂ of ≤0.6; these criteria have to be met in the supine position at least 4 hours after the end of the last prone session);
- A decrease in the Pa0₂Fi0₁ ratio of more than 20%, relative to the ratio in the supine position;
- Or serious complications related to prone positioning.

Reference

- Prane Painthoning in Server Acute Requiring Distribut Syndhume (PROSEVA study). C Guiran et al. N Engl. J Med. 2013 Jun 6:368(23):2159-68.
- Prote pathwing reduces mortality from acute respiratory disress syndrome in the low total volume eta, a meto-analysi Betlier at al. Interarior Care Medicine, ISSN 0342-4642, 03/2014. Volume 40. June 3, pp. 332-341.
- Prone Position in Arabe Respiratory Districts Syndrome. Bactionale. Indications. and Limits J. Gottinool et al. Am J Respir Crit Care Med Vol 1806. Ins. 11, pp 1286–1293. Dec. L. 2013.
- Prone Paskton in Mechanically Ventilated Patients with Severe Acate Reprintary Failure, 6 Chalte, J Sab. J Dubola, M Strodot, P Guazarguea, and D Robert, AM J RESPIR CRIT CARI MED 1997;155:473-478.

Responders

PMHYCH ICU CASES SINCE AUG 2013

Case	1	2	3	4	5	6
ICU Admission time	7/9/13 11:54	21/1/14 15:40	18/2/14 15:33	19/3/14 00:300	26/11/14 16:50	25/12/14 10:13
Hospital	YCH	YCH	PMH	PMH	YCH	Referral from other ICU
Start prone after ICU admission	5 hrs (17:00- 10:00)	2.5 hrs (18:00- 10:00)	0.5 hrs (16:00- 19:00)	3.5 hrs (04:00- 09:00)	9 hrs (02:00- 11:00)	24 hrs (for 10 hrs)
Start ECMO after ICU admission	22 hrs	24 hrs	3 hrs	13 hrs	21 hrs	7 days

OUR 6 ECMO CASES

TRAINING: PRACTICE SESSIONS.....

Turning steps

7

Use "C" shape donut or silicon

Place 3 transverse pillows

HEAD SUPPORT

PUT INTO ACTION.....

COMPLICATIONS

- Unplanned extubation
- Selective intubation into main bronchus
- Endotracheal tube obstruction
- Loss of venous or arterial access
- Facial and airway edema *
- Pressure ulcers *
- Thoracotomy tube dislodgement or kinking
- Hypotension and arrhythmias

No difference in adverse events in PROSEVA trial, complications likely related to a lack of familiarity /experience with the procedure

PRESSURE ULCERS

CONCLUSION

 Prone ventilation improves mortality by protecting the lungs from VALI.

 Must be done early and for prolonged periods rather than using it as salvage therapy.

 Complication rates are low with proper training and familiarity of procedure.

 Should be used as part of bundle therapy in severe ARDS to prevent VALI: low TV -> early prone -> early ECMO.

THANK YOU